New Model Finds Best Electric Vehicle Charging Locations — ScienceDaily

New Model Finds Best Electric Vehicle Charging Locations -- ScienceDaily

Researchers at North Carolina State University have developed a computational model that can be used to determine the optimal locations for locating electric vehicle (EV) charging facilities and how powerful the charging stations can be without straining the local power grid. . †

“Ultimately, we think the model can be used to support the development of electric car charging infrastructure at multiple levels, from projects aimed at supporting local commuters to charging facilities for highway traffic,” said Leila Hajibabai, corresponding author of a paper. about the job and an assistant professor in NC State’s Fitts Department of Industrial and Systems Engineering.

Identifying the best locations for charging facilities is a complex process, as it must take into account travel flow and user demand, as well as the needs of the regional energy infrastructure. In other words, where will people use it? And can it be supported by the power grid?

“We’ve developed a model that allows planners to optimize these decisions and serve the largest number of people without straining the energy system,” Hajibabai says.

While much work has gone into implementing charging facilities for EVs, the researchers found that most previous efforts have focused on placing these facilities based on what would work best for the power system, or what would work best from a transport position.

“Very little work has been done that addresses both,” Hajibabai says. “And those cases where both power and transportation systems were looked at didn’t take into account the decisions users make. Where do they want to charge their vehicles? What are their travel plans?

“The best location for a charging facility from the electricity system point of view is often not the best location from the transport systems point of view. And the best location from the user point of view is often a third option. Our model looks at power systems, transport systems and users decision-making to find the best compromise.”

The power system component of the model takes into account the limitations of the power distribution network – the power supply, voltage, current and so on. The transportation component of the overarching model takes into account the number of travelers, the routes they take while traveling and how far their vehicles can go before they need to be recharged. To account for user decision-making, the model attempts to identify locations that minimize travel time for users.

“People often don’t want to go out of their way to charge their vehicles, so our model takes that into account,” says Hajibabai.

The researchers are currently in talks with state and local government officials, as well as energy companies, to use the model to inform the development of EV charging infrastructure in North Carolina.

Story source:

materials supplied by North Carolina State University† Originally written by Matt Shipman. Note: Content is editable for style and length.